Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

9701/36
Paper 3 Advanced Practical Skills 2
October/November 2016
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

1 Zinc metal is extracted from ores that, in addition to compounds of zinc, can also contain copper and silver. This means zinc metal is often impure.

You will investigate the percentage purity of a sample of zinc by reacting it with excess aqueous copper(II) sulfate and comparing the enthalpy change of the displacement reaction with the accepted value.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

FB 1 is $1.00 \mathrm{moldm}^{-3}$ copper(II) sulfate, CuSO_{4}. FB 2 is powdered impure zinc, Zn .

(a) Method

Read the whole method before starting any practical work.

- Weigh the container with FB 2 and record the mass in the space below.
- Support the plastic cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $25 \mathrm{~cm}^{3}$ of FB 1 into the plastic cup.
- Place the thermometer in the solution and record the initial temperature in a suitable table of results. Tilt the cup if necessary so that the bulb of the thermometer is fully covered. This is the temperature at time zero $(t=0)$.
- Start timing and do not stop the clock until the whole experiment has been completed at $t=8$ minutes.
- Measure and record the temperature of the FB 1 in the cup every half minute up to and including $t=2$ minutes.
- At $t=2 \frac{1}{2}$ minutes add all the FB 2 into the cup and stir the contents until t is nearly 3 minutes.
- Measure and record the temperature of the mixture in the cup every half minute from $t=3$ minutes until $t=8$ minutes. Stir occasionally throughout this time.
- Weigh the container and any residual FB 2. Record this mass and calculate the mass of FB 2 added.

Results

Mass

Temperature

I	
II	
III	
IV	

(b) Plot a graph of temperature on the y-axis against time on the x-axis on the grid below. The scale for temperature should extend $3^{\circ} \mathrm{C}$ above your highest recorded temperature. You will use the graph to determine the theoretical maximum temperature rise at $t=2 \frac{1}{2}$ minutes.

I	
II	
III	
IV	

Draw two lines of best fit through the points on your graph, the first for the temperature before adding FB 2 and the second for the temperature of the mixture after addition of FB 2.
Extrapolate the lines to $t=2 \frac{1}{2}$ minutes and determine the theoretical maximum temperature rise, ΔT.
theoretical maximum temperature rise at $t=2 \frac{1}{2}$ minutes, $\Delta T=$ ${ }^{\circ} \mathrm{C}$ [4]

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Use your answer to (b) to calculate the heat energy, in J, given out when FB 2 was added to the FB 1 in the cup.
(Assume that 4.2 J of heat energy raises the temperature of $1.0 \mathrm{~cm}^{3}$ of the mixture by $1.0^{\circ} \mathrm{C}$.)
heat energy given out $=$ J
(ii) Use your answer to (i) and the Periodic Table on page 12 to calculate the enthalpy change, in kJmol^{-1}, for the displacement reaction.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

You should assume that FB $\mathbf{2}$ was pure zinc for this calculation.
enthalpy change, $\Delta H=$. \qquad
(d) The accepted value for the enthalpy change of this reaction is $-217 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Assuming no heat loss and that the other metals present in FB 2 do not react with aqueous copper(II) sulfate, calculate the percentage of zinc present in FB 2.
percentage of $\mathrm{Zn}=$ \% [1]
(e) A student carried out the same experiment but used pieces of zinc instead of zinc powder. All quantities and the initial temperature of the aqueous copper(II) sulfate remained the same.

State and explain what effects this change would have on the graph plotted.
\qquad
\qquad
\qquad
\qquad

2 Solid hydrated copper(II) sulfate has the formula $\mathrm{CuSO}_{4} \cdot \mathbf{x H}_{2} \mathrm{O}$ where \mathbf{x} is the number of moles of water of crystallisation present in 1 mole of compound.

You will determine the equation for the reaction that occurs when hydrated copper(II) sulfate is heated to remove the water of crystallisation producing anhydrous copper(II) sulfate.

FB 3 is hydrated copper(II) sulfate $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$.
(a) Method

Record all masses in the space below.

- Weigh the crucible and add $2.2-2.4 \mathrm{~g}$ of FB 3.
- Weigh the crucible plus FB 3.
- Place the crucible on the pipe-clay triangle and heat it gently for approximately 4 minutes.
- Leave the crucible to cool and reweigh the crucible plus residue.

Keep the crucible and residue for test (c).

I	
II	
III	
IV	

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the mass of anhydrous copper(II) sulfate, CuSO_{4}, produced after heating.

$$
\text { mass of } \mathrm{CuSO}_{4}=\text {............................ } \mathrm{g}
$$

(ii) Calculate the mass of water lost by heating.
(iii) Use your answers to (i) and (ii) and the Periodic Table on page 12 to deduce the value of \mathbf{x} in the formula $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$.
\qquad
(iv) Use your answer to (iii) to complete the equation for the reaction that occurs when hydrated copper(II) sulfate is heated. You should include state symbols.

$$
\begin{equation*}
\mathrm{CuSO}_{4} \ldots \ldots . \mathrm{H}_{2} \mathrm{O}(\ldots \ldots) \rightarrow \mathrm{CuSO}_{4}(\ldots \ldots)+\ldots \ldots . \mathrm{H}_{2} \mathrm{O}(\ldots \ldots) \tag{4}
\end{equation*}
$$

(c) Place the cooled crucible, with the residue, on a heatproof mat and carefully add a few drops of water.
(i) Note your observations.
\qquad
\qquad
(ii) Explain your observations in (i) in terms of the reaction occurring.
\qquad
\qquad
\qquad
(d) Two students carried out the experiment in (a) and obtained values for \mathbf{x} that did not agree with the accepted value. One student calculated a value that was less than the accepted value and the other student calculated a value that was more than the accepted value.

In each case, suggest a reason for the error and an improvement that could be made to minimise it. You can assume that the calculations were correctly carried out.

Value less than accepted value

error \qquad
improvement \qquad

Value more than accepted value

error \qquad
improvement

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) FB 4 and FB 5 are aqueous solutions of equal concentrations, in moldm ${ }^{-3}$. Each contains one anion and one cation. The cation is the same in both FB 4 and FB 5.

Half fill the $250 \mathrm{~cm}^{3}$ beaker with water. Heat the water to about $80^{\circ} \mathrm{C}$ and then turn off the Bunsen burner. This is the hot water bath needed in the tests below.

To about a 2 cm depth of aqueous silver nitrate in a test-tube, add a few drops of aqueous sodium hydroxide to give a grey/brown precipitate. Then add aqueous ammonia dropwise until the precipitate just disappears. This solution is Tollens' reagent and is needed in a test below.
(i) Carry out the tests on separate samples of FB 4 and FB 5 and complete the table.

test	observations	
	FB 4	
To a 1 cm depth of solution in a test-tube in a test-tube rack, add a spatula measure of sodium carbonate.		
To a 1 cm depth of solution in a test-tube, add a few drops of acidified potassium manganate(VII. Place the test-tube in the hot water bath.		
To a 1 cm depth of Tollens' reagent in a test-tube, add a few drops of solution. Place the test-tube in the hot water bath and leave for several minutes.		

(ii) From your observations in (i), identify the cation present in both FB 4 and FB 5. cation \qquad
(iii) From your observations in (i), what can be deduced about the anion present in FB 4?
\qquad
(iv) Place a 1 cm depth of FB 4 and FB 5 separately in two test-tubes.

Measure and record the temperature of the two solutions.
FB 4 \qquad ${ }^{\circ} \mathrm{C}$

FB 5 ${ }^{\circ} \mathrm{C}$

To each solution, add an approximately 2 cm length of magnesium ribbon. Measure and record the maximum temperature reached in each test-tube.

FB 4 + Mg ${ }^{\circ} \mathrm{C} \quad$ FB $5+\mathrm{Mg}$................................ ${ }^{\circ} \mathrm{C}$
(v) Explain why there is a difference in the temperature rise for the reactions of magnesium with solutions FB 4 and FB 5.
\qquad
\qquad
\qquad
(b) FB 6 is a solid that contains two cations from those listed on page 10.

You are to plan a series of experiments that will enable you to identify the cations present. You should then carry out your plan, record all the observations you made in a suitable table and identify the cations present.
cations present are
and

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{r^{+}(\mathrm{aq})} \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	® ¢ ¢
๕吅	
	® 을
	$\bar{\circ}$
	\＆¢ ¢ ¢ ¢
	8

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

